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Multibarrier tunneling
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We study the tunneling through an arbitrary number of finite rectangular opaque barriers and generalize
earlier results by showing that the total tunneling phase time depends neither on the barrier thickness nor on the
interbarrier separation. We also predict peculiar features of the system considered, namely the independence of
the transit time~for nonresonant tunneling! and the resonant frequency on the number of barriers crossed,
which can be directly tested in photonic experiments. A thorough analysis of the role played by interbarrier
multiple reflections and a physical interpretation of the results obtained is reported, showing that multibarrier
tunneling is a highly nonlocal phenomenon.
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I. INTRODUCTION

A renewed interest in a typical quantum phenomen
such as the tunnel effect has been recently achieved due
long series of experiments aimed to measure the tunne
transit time~for reviews see, for instance, Ref.@1#!. While
such experiments involving electrons are usually difficult
realize~mainly due to the smallness of the electron de B
glie wavelength at usual temperatures! and even of uncertain
interpretation, the observations on photonic tunneling@2–6#
have by now provided clear data on this subject. Despite
different phenomena studied in several experiments~under-
sized waveguides, photonic band gap, total internal refl
tion! and the different frequency ranges for the light us
~from the optical to the microwave region!, all such experi-
ments have shown that, in the limit of opaque barriers,
transit time to travel across a barrier of widtha is usually
shorterthan the corresponding one required for real~not eva-
nescent! propagation through the same region of widtha.
This result can be interpreted@1# in terms of a superlumina
group velocityvgr.c which, however, does not violate Ein
stein causality, since the signal velocity relevant for that@7#
is never measured. Nevertheless, we prefer to look at
experimental result as an observation of the simple Hartm
effect @8#: for opaque barriers the tunneling phase time
independent of the barrier width. Although several defi
tions of the tunneling time~also related to the different ex
perimental setups used! exist @1# and a general consensus o
this is still lacking, it seems that all the experimental resu
can be successfully interpreted in terms of phase time@9#.

Further light has been put on the problem by recent
periments involving double-barrier penetration@10#. In fact,
while the above effect has been confirmed in such a sys
too ~far from the resonances of the structure!, observations
show that the transit time is also independent of the sep
tion distance between the barriers~supposed to be thick!.
This peculiar phenomenon has been studied theoreticall
Ref. @11#, where the authors have provided a straightforw
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generalization of the Hartman effect for double-barrier tu
neling.

Convincing qualitative explanations of these two findin
~namely, that the tunneling phase time is independent of
barrier thickness as well as of the interbarrier separation
opaque barriers! have been reported. When considering
given wave packet entering a potential barrier region, a
shaping phenomenon occurs in which the traveling edge
the pulse is preferentially attenuated with respect to the le
ing one, thus simulating a group velocity greater thanc @1,3#.
In practice, the Hartman effect in the tunneling through
thick barrier is explained from the fact that inside the barr
no phase accumulates, and the entire phase shift comes
from the boundaries, thus being substantially independen
the thickness@12#. Furthermore, when two barriers ar
present, the transit time independence on the barrier sep
tion can, instead, be understood in terms of an effective
celeration of the forward travelling waves in the interbarr
region, which arises from a destructive interference betw
the two barriers@11#.

Further noticeable results have been recently achieve
Ref. @12#, where it has been shown that a wave packet trav
in zero timea region withN arbitraryd-function barriers.

In this paper, we extend all these findings by consider
the case ofN successive opaque barriers with finite widt
and heights. While we confirm all previous results, we ge
eralize them by showing that some peculiar tunneling pr
erties are independent of the number of the barriers cros
~Sec. II!. Furthermore, in order to establish a quantitati
interpretation of the involved phenomena, in Sec. III w
study the role of multiple reflections in double-barrier tu
neling and show how strongly the total tunneling phase ti
depends on nonlocal effects. Finally, in Sec. IV we discu
the results obtained and give our conclusions.

In view of the formal analogy@13# between the Schro¨-
dinger equation and the electromagnetic Helmholtz equat
our study applies to matter particle tunneling as well as
evanescent propagation of photonic wave packets. This
straightforward consequence of the fact that in both cases
starting point is basically the same@in our case it is Eq.~2!#
@9#, on interchanging the roles of angular frequencyv and
©2003 The American Physical Society09-1
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wave vectork into the corresponding ones of energyE and
momentump through the Planck–de Broglie relations. Thu
throughout this paper, we indifferently use particle or wa
terminology unless the meaning of what we are doing
comes unclear.

II. TUNNELING THROUGH N SUCCESSIVE BARRIERS

Let us consider a wave packet moving along thex axis
and entering atx50 a region with a potential barrierV(x) as
depicted in Fig. 1:

V~x!5H V0 , ~ i 21!L<x<~ i 21!L1a

0, otherwise,
~1!

for i 51,2, . . . ,N. For the sake of simplicity, we choose th
heightV0 of the potential barriers, as well as the widtha of
each barrier, to be the same for allN rectangular barriers. We
further assume equally spaced barriers,L2a being the inter-
barrier distance.

The propagation of the wave packet through the barr
is described by a scalar fieldc representing the Schro¨dinger
wave function in the particle case or some scalar compon
of the electric or magnetic field in the photonic case. This
the solution of the Schro¨dinger equation or the Helmholt
equation with potential or refractive index in Eq.~1! and, in
both cases, it takes the following form:

c~x!55
c2i~x!, ~ i 21!L<x<~ i 21!L1a

~ i 51,2, . . . ,N!

c2i 11~x!, otherwise

~ i 50,1,2, . . . ,N!,

~2!

with:

c1~x!5eikx1Re2 ikx, ~3!

c2i~x!5A2ie
x[x2( i 21)L]1B2ie

2x[x2( i 21)L]~ i 51,2, . . . ,N!,
~4!

c2i 11~x!5A2i 11eik[x2( i 21)L]1B2i 11e2 ik[x2( i 21)L]

3~ i 51,2, . . . ,N21!, ~5!

c2N11~x!5Teik[x2(N21)L] . ~6!

Obviously, the physical field is represented by a wave pac
with a given spectrum inv:

FIG. 1. Potential barrierV(x) with N equally spaced rectangula
bumps of given height and width.
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C~x,t !5E dvh~v!c~x!e2 ivt,

whereh(v) is the envelope function. Keeping this in min
for the sake of simplicity we deal with only stationary sol
tions as in Eq.~2!.

An alternative parametrization for the wave functio
~which is especially useful for largeN) is that of writing
c(x) in Eq. ~2! in terms of the periodic and evanesce
Bloch wave functions of the corresponding periodic barr
potential. This approach also allows to obtain closed exp
sions for the reflection and transmission coefficients for
arbitrary number of barriers@14#. However, we prefer to star
with Eq. ~2! which is a direct generalization of the corre
sponding expression usually considered in one-barrier
tems, in view of our discussion on analogies and departu
between theN-barrier and single-barrier cases. As noted
Ref. @9#, the explicit dependence on the frequency of t
~real! wave vectork in the barrier-free regions and imagina
wave vectorix in the barrier ones enters only the final e
pression for the phase time. As long as possible we do
use a particular dispersion relation in order to draw gene
features which are common to the particle and to the w
case.

The 4N unknown coefficientsR,T,Ai ,Bi are obtained
from the 4N matching conditions for the functionc and its
derivativec8 at the discontinuity pointsx1( i 21)L, x5( i
21)L1a of the potential. Note that the quantitiesR andT
have the meaning of~total! reflection and transmission coe
ficient from theN-barrier system, respectively, and satis
the unitarity conditionuRu21uTu251.

We have produced aMATHEMATICA symbolic code in or-
der to obtain explicit analytic expressions for all the coe
cients appearing in Eqs.~3!–~6!. However, we here repor
only the interesting result obtained for the transmission
efficient T(N) for an N-barrier system in the opaque barri
approximation1 xa@1. In this limit the quantityT(N) can
be factorized in the following way:

T~N!eika5C0E~N!F~N!, ~7!

C05
4ixk

~k1 ix!2
,

E~N!5@e2xa#N,

F~N!5F 2xk

2xk cosk~L2a!2~k22x2!sink~L2a!
GN21

.

Note that only the real termsE and F depend ona,L,N,
while the complex factorC0 does not. As a consequenc
since the tunneling phase timet is defined as

1For general expressions obtained using the parametrizatio
terms of Bloch wave functions, see Ref.@14#.
9-2
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t5
df

dv
~8!

and the quantity

f[arg$T~N!eika%5argH 4ixk

~k1 ix!2J
5arctan

k22x2

2xk
~9!

is independent ofa,L,N, we arrive at the general conclusio
that the tunneling phase time for a system of N opaque b
riers depends neither on the barrier width and interbarri
distance nor on the number of the barriers.

Let us now discuss the effects of the real terms in Eq.~7!
on the tunneling probabilityPT(N)5uT(N)u2:

PT~N!5F 4xk

k21x2G 2

@e2xa#2N

3F 2xk

2xk cosk~L2a!2~k22x2!sink~L2a!
G 2(N21)

.

~10!

We easily recognize that the last factor in Eq.~10!, coming
from the termF(N) is responsible for the resonance stru
ture of the transmission probability. The factorF(N), is, of
course, absent in the case of only one barrier, i.e.,N51 or
NÞ1 but L5a. However, no resonance can occur even
the particular case in which the interbarrier distance is tu
in a way that L2a5np/k(n50,1,2, . . . ). In this case,
waves moving forward and backward in the interbarrier
gions interfere between them such that no resonance t
place. The resonance condition for the tunneling probab
is, from Eq.~10!, the following:

tank~L2a!5
2xk

k22x2
. ~11!

It is worthwhile to observe that Eq.~11! does not depend on
N, so thatthe resonant frequency is the same irrespective
the number of barriers to be crossed. Note, however, that the
N21 coincident resonances of Eq.~10! of the ideal case
studied here split intoN21 closely spaced~but different!
resonances in real physical systems. For example, in crys
in the limit of infinite N, these merge into the band structu
of the periodic barrier potential.

Finally, we point out an intriguing consequence of t
resonance condition. Let us write Eq.~11! as follows:

tanf tank~L2a!51, ~12!

wheref is given in Eq.~9!, and take the derivative of Eq
~12! with respect to the angular frequencyv. By using Eq.
~8!, we easily recognize thatt1t050, where t0 is the
~phase! time for traveling the interbarrier distanceL2a in
vacuum. Keeping in mind that the total tunneling time h
01660
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the same value of the tunneling time for crossing only o
barrier ~see above!, we see that, when resonant tunneli
takes place,the total time required to cover the distance
~one barrier lengtha plus one interbarrier distanceL2a) is
zero. This, however, is only a mathematical result since,
the actual situation, the physical phase time is the sum of
off-resonance time considered above~for which the property
just outlined holds! and the time required to cross the res
nance, which is typically much larger than the off-resonan
time, being proportional to the absolute thickness of the
tential structure. In the following, we only consider the i
teresting case of nonresonant tunneling.

III. MULTIPLE REFLECTIONS AND NONLOCALITY

In order to have a physical interpretation of the resu
obtained previously, we now consider the effect of sing
barriers on the propagation of the wave packet through
entireN-barrier system, by invoking the superposition pri
ciple. For xsthe sake of simplicity, we will study the case
a system of two opaque barriers.

A. Partial coefficients

For N52, in the barrier-free regions, Eqs.~3!–~6! reduce
to the following:

c1~x!5eikx1Re2 ikx,

c3~x!5A3eikx1B3e2 ikx, ~13!

c5~x!5Teik(x2L),

where the explicit expressions for the coefficients are
ported in the Appendix. Let us now denote withR1 ,T1 and
R2 ,T2 the~partial! reflection and transmission coefficients
the first and second barrier, respectively. In the region w
x,0 the reflected wave is described by the term

Re2 ikx5R1e2 ikx1B3T1e2 ikx, ~14!

while for x.L1a the transmitted one is described by

Teik(x2L)5A3T2eik(x2L). ~15!

By taking into account multiple reflections from the two ba
riers in the region witha,x,L, we see that the forward
traveling wave is described by the term

A3eikx5T1@11R1R21~R1R2!21•••#eikx, ~16!

while the backward one is described by

B3e2 ikx5A3R2e2 ik(x2L). ~17!

Then, by introducing the quantity

S5(
l 50

`

~R1R2! l5
1

12R1R2
, ~18!

which accounts for multiple reflections, from Eqs.~14!–~17!
we obtain
9-3
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R5R11B3T1 ,

T5A3T2 , ~19!

A35T1S,

B35A3R2eikL.

By solving these equations with respect to the partial refl
tion and transmission coefficients, we get

R15
R2A3B3

12B3
2

,

T15
A32B3R

12B3
2

, ~20!

R25
B3

A3
e2 ikL,

T25
T

A3
.

In the opaque barrier limitxa@1, for the second barrier we
obtain

R25ROBeikL, ~21!

T25TOBeikL,

while for the first barrier:

R15ROB1RQ1RR, ~22!

T15TOB1TQ1TR,

where

ROB5
k2 ix

k1 ix F12
4ixk

~k1 ix!2
e22xaG ,

TOB5
4ixk

~k1 ix!2
e2 ikae2xa ~23!

are the reflection and transmission coefficients correspon
to a one-barrier system (N51) and

RQ52S k2 ix

k1 ix D 3

F 2e2ik(L2a)e22xa,

RR5S k2 ix

k1 ix D 3

F 2eikLe22xa,

TQ5S k2 ix

k1 ix D 2

Fe2ik(L2a)e2 ikLe2xa, ~24!

TR52S k2 ix

k1 ix D 2

Fe2xa .
01660
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For future reference, we also consider the partial coefficie
R1

0 ,T1
0 ,R2

0 ,T2
0 in the approximation of no multiple reflec

tions, as considered in Ref.@11#. These are obtained from
Eqs.~19! by settingS51. We have

R15ROB1RQ, ~25!

T15TOB1TQ ,

while R2
0 ,T2

0 are the same as in Eqs.~21!.
Note, however, that in Ref.@11# the authors have consid

ered the case of no multiple reflections and, moreover, t
also neglected the second termB3T1 in the first equation in
Eq. ~19! corresponding to backward waves in thex,0 re-
gion transmitted from the first barrier, reflected from the s
ond one and again transmitted from the first barrier. In t
approximation, the quantityR1

0 in Eq. ~25! should be re-
placed by the following one:

R̃1
05ROB1

k2 ix

k1 ix

4ixk

~k1 ix!2
Feik(L2a)e22xa.

While the parametrization of the wave function considered
Ref. @11# is, of course, permitted and leads to correct resu
nevertheless, the partial coefficients they obtained have
direct physical meaning, as we will show below.

B. Unitarity conditions

The interpretation of the quantitiesR1 ,T1 and R2 ,T2 as
reflection and transmission coefficients of the first and s
ond barrier is derived from the unitarity conditions satisfi
by these coefficients. In fact, sinceuRu21uTu251 and
uROBu21uTOBu251, we find that

uR1u21uT1u251, ~26!

uR2u21uT2u251.

It is easily recognizable as well that, assuming no multi
reflection, the total probability for scattering from the fir
barrier islower than 1:

uR1
0u21uT1

0u2512F 2e22xa, ~27!

this revealing that something has been forgotten. Obviou
multiple reflections are the missing terms and it is worth
observe that the probability for this phenomenon to occ
which from Eq.~27! we deduce to beF 2e22xa, is given by

PR[uRRu21uTRu25F 2e22xa. ~28!

Thus the quantitiesRR andTR, which must be added to th
no multiple reflection coefficientsR1

0 and T1
0, in order to

obtain the complete onesR1 and T1 respectively, can be
interpreted as the terms describing the phenomenon of m
tiple reflections between the first and second barrier.

Incidentally, by using the parametrization of Ref.@11#, we
obtain an unphysical scattering probabilitygreater than 1,
9-4
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uR̃1
0u21uT1

0u2511F 2e22xa,

which makes it impossible to give a direct physical mean
to R̃1

0 , T1
0.

The meaning of the picture just outlined is then qu
trivial. R2 and T2 corresponding to the second barrier a
simply given by the one-barrier coefficientsROB,TOB times a
phase factor which takes into account the fact that the sec
barrier starts atx5L, while the reference point in our dis
cussion is atx50. Instead,R1 and T1 related to the first
barrier are given by the sum of two terms: the first one c
responds to the no multiple reflection coefficients, while
second one describes the phenomenon of multiple re
tions. However, it is remarkable thatno multiple reflection
coefficients R1

0 and T1
0 in Eqs. (25) do not coincide with th

one-barrier coefficients ROB and TOB. This is an obvious
consequence of the fact that the scattering probability fr
the first barrier,neglectingmultiple reflections, cannot be
equal to unity and the extra termsRQ and TQ in Eqs. ~25!
must be present in order to achieve the probability constr
in Eq. ~27!. On the other hand, the scattering probabili
includingmultiple reflections, must be equal to 1@according
to Eq.~26!#, so that we can deduce that the quantitiesRQ and
TQ are related to the multiple reflection coefficientsRR and
TR. It is very easy to obtain from Eqs.~24! that RQ andTQ
differ from RR andTR just by a phase factor~depending onL
anda):

RQ

RR
5

TQ

TR
52eik(L22a). ~29!

Then, multibarrier tunneling is a highly nonlocal phenom
enon driven by multiple reflections, whose influence on
determination of the reflection and transmission coefficie
is ~indirectly! present even in the case in which they a
neglected.

C. Tunneling phase time

Let us now consider the tunneling phase timet in Eq. ~8!
corresponding to the double-barrier crossing considered
and introduce the quantities

f15arg$T1eika%,

f25arg$T2eika%, ~30!

fS5arg$Seik(L2a)%,

whose derivatives with respect to frequency give the ph
times for the first-barrier crossing, the second-barrier cro
ing, and the time associated to multiple reflections, resp
tively. SinceT5T1T2S from Eqs. ~19!, the total tunneling
phase is given by

f5f11~f22kL!1fS. ~31!
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This relation leads to the obvious conclusion that the tunn
ing timet is the sum of the partial times2 2t1 andt2 spent to
travel across the first and second barrier, respectively,
the timetS required by multiple reflections in the interbarrie
region of lengthL2a. However, it is interesting to evaluat
the explicit expressions for these times and, from Eqs.~30!
we get

f15f02
kL

2
1ka, ~32!

f22kL5f0 , ~33!

wheref05arg$TOBeika% is the one-barrier tunneling phas
time. For opaque barriers, the leading term inS is, from Eqs.
~18!, ~21!, and~22!, the following:

S5
~k1 ix!2

4ixk
e2 ikL/2

2xk

2xk coskL/22~k22x2!sinkL/2

and thus

fS52f01
kL

2
2ka. ~34!

While the time required to cross the second barrier equ
exactly the one-barrier tunneling phase time@see Eq.~33!#,
from Eqs.~32! and ~34! we see that

f11fS50, ~35!

that is, the time spent in traveling from the starting edge
the first barrier to the starting edge of the second one is ze.
Something similar to this statement has already been s
gested in literature~see, for instance, Ref.@11#!, but now we
have a quantitative proof for that. Moreover, we can a
deduce that, due to multiple reflections, the time to cross
first barrier is usuallydifferentfrom the one-barrier tunneling
phase time since

f02f15
fQ2fR

2
, ~36!

where

fQ5arg$TQ%52f01kL22ka,

fR5arg$TR%52f0

are the phases corresponding to the termsTQ and TR, the
equality holding true only in the case in which the interba
rier distance coincides with the barrier width, i.e.,L52a.

2Note that the timet2 corresponds to the phasef22kl, since the
traveling along the distanceL is already taken into account inf1

1fS or, in other words, in the expression for the coefficientT2 in
Eq. ~21! we have already considered the shift fromx50 to x5L.
9-5
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IV. CONCLUSIONS

In this paper we have studied the tunneling of a particle
a photonic wave packet through an arbitrary numberN of
finite rectangular opaque barriers and obtained an ana
expression for the total transmission coefficient Eq.~7!.
From this we have confirmed and generalized to the pre
case what was found earlier for a system of one@8# or two
@11# barriers: the~total! tunneling phase time is independe
of both the barrier width and interbarrier distance. The sa
result applies to the reflection time for the model studied
the present paper. In fact the potential barrier considered
is symmetric, so that the reflection phase and the trans
sion phase only differ by the fixed anglep/2. As a result, the
phase times for reflection and transmission are equal. Th
features have been observed experimentally for single-@2–6#
and double-barrier@10# tunneling using photonic setups
Amazingly enough, we have further found that, although
tunneling probability decreases exponentially with increas
barrier thickness and the number of barriers~in the opaque
barrier limit!, the tunneling time does not depend even on
number of barriers crossed, i.e., it is the same for one, tw
more barriers. Moreover, when considering resonant tun
ing, we have also shown that the position in frequency~or
energy! of the resonance of the structure is independen
the number of barriers as well. These two predictions can
experimentally tested using, again, photonic devices.

In order to obtain a physical picture of what happens
the system considered and, especially, of the peculiar
tures outlined above, we have studied the role of multi
reflections between the barriers on the tunneling and fo
this to be a highly nonlocal phenomenon. In fact, as show
Sec. III, even in the case of increasingly large separa
between the barriers, the effect of multiple reflections can
be avoided at all. In particular, multiple reflections play
crucial role in the understanding of the intriguing results
the ~total! tunneling time quoted above. Though in Sec.
we have dealt with a two-barrier system, the main res
achieved can be easily generalized to multibarrier tunne
as follows. ForN barriers the partial reflection and transm
sion coefficients corresponding to the firstN21 barriers are
clearly influenced by multiple reflections occurring in th
interbarrier regions, while those associated to the last ba
are not and coincide with one-barrier coefficients up to
phase factor. In particular, as shown in Sec. III C, the tunn
ing phase time for crossing only the last barrier equals
for a single-barrier structure. Since the total tunneling ti
for crossing all the barriers coincides as well with the on
barrier time~see Sec. II!, we immediately deduce that th
time for traveling from the starting edge of the first barrier
the starting edge of the last one is zero. Note that suc
result can be achieved only if we take into account multi
reflections and, in any case, the partial times for cross
single barriers are usually different from the one-barrier t
neling time. However, we stress that such a ‘‘partial time’’
not directly measured in physical experiments and, as a c
sequence, is not completely meaningful. Nevertheless,
discussion results to be useful in pointing out the relev
role of multiple reflections.
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Finally, we point out that our findings also agree with t
recent results reported in Ref.@12#, according to which a
wave packet travels in zero time a region withN d-function
barriers. In fact, as said above, the total tunneling time co
cides with the transit time for the last barrier or one-barr
phase time. From Ref.@9# ~see Eq.~13! of that paper! we
then see that, forx→`, this time tends to zero, thus recov
ering the result of Ref.@12#. It would then be nice, in the
future, to make the connection between multiple reflectio
studied here and the tunneling interpretation in terms of
peroscillations quoted in Ref.@12#.
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APPENDIX: COEFFICIENTS FOR NÄ2

From the matching conditions for the wave function
Eq. ~2!, we obtain the following expressions for the coef
cients describing the propagation through two succes
opaque barriers:

R.
k2 ix

k1 ix
@112i sink~L2a!Fe22xa#, ~A1!

A2.
2k

k2 ix

~k2 ix!2

2xk
sink~L2a!Fe22xa, ~A2!

B2.
k2 ix

k1 ix H 2k

k2 ix F12
~k2 ix!2

2xk
sink~L2a!Fe22xaG J ,

~A3!

A3.e2 ikLFe2xa, ~A4!

B3.
k2 ix

k1 ix
eikLFe2xa, ~A5!

A4.0, ~A6!

B4.
2k

k1 ix
Fe2xa, ~A7!

T.
4ixk

~k1 ix!2
Fe22xa ~A8!

~in all these expressions we have neglected terms of t
order inexa).
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